What follows is a comprehensive list of materials and supplies necessary to complete all portions of the Nanocrystalline Dye Sensitized Solar Cell Kit. The list is divided into those materials that are included in the Solar Cell kit, those that are needed but not included, and those that are optional.

Those materials that are marked with a star ★ are available for separate purchase from ICE. We have also listed other suppliers for materials that may become depleted but are difficult to obtain (but remember, part numbers may change).

Equipment and Supplies: Required and Included

- **Conductive (tin dioxide coated) transparent glass, in glassine envelopes (10 pieces included)**

 Two (2) pieces of glass are used per solar cell. Pre-cut commercial (2.5 cm × 2.5 cm) TEC 8 or TEC 10 glass can be purchased from several suppliers including: Hartford Glass Co., P.O. Box 613, Hartford City, IN 47348; 765/348-1282; fax: 765/348-5435; e-mail: hartglas@netusa1.net; or Pilkington North America Inc., P.O. Box 799, Toledo, OH 43697-0799; 419/247-3731; fax: 419/247-3821; http://www.pilkington.com. [10 additional slides may be purchased from ICE]

- **Colloidal titanium dioxide powder, AEROXIDE® TiO₂ P 25 (20 g included)**

 Six grams are used per batch of TiO₂ suspension. A supplier in the U.S. of Evonik Corporation’s Aerioxide P-25 titanium dioxide is: The Cary Company, 1195 West Fullerton Avenue, Addison, IL 60101; 630/629-6600; www.thecarycompany.com. [20-g jars of TiO₂ may be purchased from ICE]

- **Copper foil tape (3M No. 1181 with pressure sensitive conductive adhesive) (included)**

 Two 1-cm long pieces are used per solar cell. 3M Electrical Specialties Div., 6801 River Place Blvd., Austin, TX 78726-9000; 800/245-3573 or 512/984-1800; or Digi-Key, stock #3M1181A-ND, 701 Brooks Ave. South, Thief River Falls, MN, 56701; 800/344-4539; fax: 218/681-3380. [pieces of copper foil tape may be purchased from ICE]
Iodide electrolyte solution in dropper bottle (15 mL included)
0.5 M Potassium iodide mixed with 0.05 M iodine in water-free ethylene glycol (not very stable in sunlight without a UV filter).

[15 mL bottles of electrolyte solution are available from ICE]

The calculations for making the electrolyte solution are as follows

Potassium Iodide, KI:
\[(0.5 \text{ mol/L}) \times (0.01 \text{ L}) \times (166.01 \text{ g/mol}) = 0.83 \text{ g in 10 mL of solvent}\]

Iodine, I₂:
\[(0.05 \text{ mol/L}) \times (0.01 \text{ L}) \times (253.81 \text{ g/mol}) = 0.127 \text{ g in 10 mL of solvent}\]

Here is the procedure to make the electrolyte solution
Put the correct amount (10 mL) of ethylene glycol in a container. Weigh 0.127 g of I₂ and add it to 10 mL of ethylene glycol. Weigh 0.83 g KI and add to the same 10 mL of ethylene glycol. Mix together with a clean glass rod or mixing instrument. Do not get any water in the electrolyte solution. Keep in mind that the chemicals are hygroscopic and will pick up moisture from the air. Keep all bottles and containers tightly capped when not in use.

If you want to mix up a 100 mL (0.1 L) batch, multiply all the gram values (above) by 10.

Soft graphite pencil (HB woodless graphite pencil) (1 included)
Graphite pencils may be purchased from any art supply store. Alternatively, an artist’s charcoal pencil, a cleaned carbon rod taken from an alkaline battery, or soot from a candle flame can be used.

Binder Clips (small) (10 clips included)
The binder clips should be bent so that the pressure they exert is not too great. The jaws should be partially opened. Two clamps are used per solar cell.

500-Ohm potentiometer (1 potentiometer included), variable load
It is recommended that three wires be soldered to the potentiometer leads so that connections are easier to make during the data collection portion of the experiment. [potentiometers are available from ICE]

Glassine envelope to store the glass slides (included)
More envelopes can be purchased from a stamp collecting supplier.

Dropper bottle (1 included)
Used for storing and dispensing the TiO₂ suspension.
Equipment and Supplies: Required, NOT Included

- **Surfactant (such as Triton® X 100 or clear dish detergent)**
 Triton® X 100 can be obtained from Avantor Performance Materials (previously Mallinckrodt Baker), 222 Red School Lane, Phillipsburg, NJ 08865; 908/859-2151; http://www.mallbaker.com/. Triton® X 100 is also readily available from Sigma-Aldrich, an international chemical supplier. Find a local distributor at http://www.sigmaaldrich.com/.

- **Light source**
 - **Option 1 (Recommended)**
 An overhead projector with (integral) parabolic reflector. If using an overhead projector, the assembled solar cell must be held with a ring stand and clamps midway between the projector's glass slide and projection lens to achieve illumination levels comparable to sunlight.
 - **Option 2**
 A halogen lamp with (integral) parabolic reflector. For example: Sylvania PAR 38 Halogen, GE12, or MB-JDR-75 can be obtained at many hardware stores. When using a halogen lamp, it is important to use a 10 × 10 cm piece of conductive glass (e.g. TEC 10 or 15) or other suitable heat (IR) filter to protect the solar cell from excessive heating. Hold the setup together with clamps and a ring stand.

 A suitable IR filter can be made by using a petri dish filled with 0.1 M CuSO₄ solution. This blue solution will absorb most of the IR light, but will allow most of the visible light to pass through. The CuSO₄ filter or the TEC glass is placed between the light source and solar cell using clamps and a ring stand.

- **Heat Source (see p 38, Figure N)**
 - **Option 1**
 Low air flow hot air gun, or paint stripper gun. Available from most home improvement, hardware, and painting supply companies. A 25 cm × 4 cm (inner diameter) glass tube, Pyrex or quartz is best. Use clamps and a ring stand to hold the setup together: one clamp holds the heat gun, another clamp holds the tube. To prevent burning, all clamps that are exposed to elevated temperatures should have their rubberized coatings removed.
 - **Option 2**
 Ceramic top hotplate (must be able to reach ~450 °C)
 - **Option 3**
 An alcohol lamp, ring stand, and ceramic triangle.

- **Nitric or acetic acid solution (10 mL, pH 3–4 in deionized water)**
 or **0.2 mL acetyl acetone (used per TiO₂ suspension batch)**

- **Polycarbonate (Lexan) plastic plate (2.5 cm × 2.5 cm)**
 Note: the lenses on most safety glasses are polycarbonate—a lens from a discarded pair of safety glasses will work.
- Ethanol and deionized water in wash bottles
- Organic dye
 Prepared from blackberries, raspberries, pomegranate seeds, Bing cherries, or green citrus leaves, fresh or frozen
- Multimeter, capable of measuring volts and ohms.
 A digital multimeter is best. Two multimeters per group work best, but see Appendix One (page 62) for alternate instructions if only one meter is available per group.
- Alligator clips (large)
 The clips should exert a large pressure when closed.
- Zip-lock™ or other sealable plastic storage bags
- Hookup wire (black and red)
- Pipettes (or auto pipette)
- Mortar and pestle
- Ring stand and clamps
 Used to fix the solar cell a certain distance from light source
- Tweezers or forceps
- Tongs
- Petri dish or beaker
- Transparent tape
 Scotch™ brand by 3M works well
- Glass stirring rod
- Absorbent tissue paper
- Cotton swabs
- Filter paper, glassware for filtration
- Safety goggles
- Protective gloves, tight fitting

Optional Materials

- Sephadex LH 20 (Pharmacia) column
- Motor (Maxon A-max 103707, or 2522.938-12.112.000)
 Maxon Precision Motors, Inc., 101 Waldron Road, Fall River, MA 02720, USA; 508/677-0520; http://www.maxonmotorusa.com/contact.html or Maxon Motor AG, P.O. Box 263, CH-6072 Sachseln, Switzerland; Fax: + 41 41 666 1616; http://www.maxonmotor.com. Approximately $40 per motor. If unavailable, use a motor that will run on 4 mA and 0.4V
- Capacitor: 10,000 micro-Farad, single polarity
 Available from electronic supply companies. ICE recommends soldering wires to the capacitor leads so that connections are easier to make.